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By H. G. K&mner

1. IWRODU!TION

For thirty years aeroelastic problems h airplane design were
practically unlmown, owing to the low speed and rigid design method of
aircraft at that time. The first contributions to the unsteady lifting
surface theory appeared then, but they created only academic interest.
~ the meantime, the speed of the airplanes continued to increase, while
the aercxQmamic refinement dictated consistently thinner and slenderm
wing configurations. As a result, the stiffness and the oscillation
phenomena connected with it have proved to be a limit of the technique
just like the strength.

The aeroelastic processes me complicated because th~ encompass
the whole airplane with its many parts and parameters. Aeroelasticity
is in a stage of rapid development of its theoretical and experimental
meth~s. Its scope expands continuously. The development started with
studies on wing and aileron flutter. They were followed later by studies
on tail and tab flutter. At very high speed, two new phenomena appeared,
fluttering of the skin and vibrations on approaching sonic velocity, which
are based on the instability of compression shocks at the curved sur-

..

faces. An extreme case of flutter is the static instability at zero fre-
quency. Relevant also is the distortion of the wing by the aerodynamic
forces and the buckling and distortion of the skin. The reversal of the
aileron effect due to the wing distortion, while concerning only the
control, can be treated with the ssme formulas. — — —

As regards the gust stress and the stabili~ of flight motion, the
stiffness of the structural components also becomes so much more signi-
ficant as the wing shapes become thinner and slenderer. This is why
these zones are now included in a&roelasticity smd are treated in part
by the methods developed for flutter. However, their discussion would
go beyond the confines of the present report. It also applies to the
aeroelastic problems of the ratathg wings, the supersonic propellers,
and the fan and turbine blades. The literature on aeroelasticity since
1%5 is too voluminous to be enumerated here. Some more recent compre-
hensive descriptions on ai.rplsne”flutterme presented h-the reports
by Kussner (ref. 1), Rroadhent (ref. 2), Garrick (ref. 3), and

*,,
Aeroelastische Probleme tiesFlugzeugbaus,” Zeitschrift fiir

Flugwissenschaften, 3. Jahrgang, Heft 1, Jan. 1955, pp. 1-18.
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van de Vooren (ref. 4), and in
Rosenbaum (ref. 5), which also

2. INDICATIONS OF.

the introductory article by Scsmlan and
contains further references.

AIRPLANE VIRRATXONS (FIUMER)

Flutter rests on the fact that the airplane as a vibratory system
absorbs energy from the airstresm. This is so much-more easily possible
as the speed of the airplane is greater. Both the &ing energy and
the consumption ener~ from the airstream increase Gith the flutter
amplitude. Depending upon which of these energies~ows faster, it may
result in mild flutter with constant smpiitude or vicious flutter with
amplitude increasing steadily to failure.

Shuplest of all are the natural tibration~ of elastomechsmical
—

systems in vacuum. If the system exists in an incompressible fluid with-
out moving in it, the Kelvin impulses are additive; they ue the mass
forces of the covibrating fluid masses.

I
la the atisphere, the Kelvin

hpulses generally mount to only a few percent of the mass forces of the
airplane, hence do not change its vibratory behavior appreciably. For
these so-called static vibrations, all potits of the system pass almost
simultsmeouslythrough zero position. The nodal lines, that is, the loci
of disappearing.vibration amplitude, are then so much more sharply pro-
nounced as the damping energy is less. It is customary, although not
exactly correct, to identffy all static oscillation modes as “oscillations
with one degree of freedom.“

●

The static oscill.ationmodes are not capable, as a rule, of taking
energy from the airstresm; they rather give off energy on”the airstream,

●

hence are damped additionally. Absorption of enerq is generallj
possible only when a static oscillation mode is modified by the ati forces
which are additionally created on the oscillating wing during forwsrd
motion. Illthat event, there is no longer a sharp nodal line; the new

oscillation has several degrees of freedom. However, it is possible that
certain static oscillation modes with one degree of freedom take up energy
from the airstream in certain speed rqages, hence flutter, especially at
higher Mach numbers, smd in the supersonic range. (Cf. Ruqysm (ref. 6),
Curudn.gham(ref. 7), Watkins (ref. 8), Weber and Ruppel (ref. 8a).)

To maintain a static oscillation mode with constant amplitude calls
for considerable ener~ input, even for sm oscillating system h vacum.
The cause for it is the solid friction.of the ma@ individual components
on each other, of which the airplane M riveted together, welded, or
bonded, as well as the friction of the control bearings
Solid test rods have about 100 times lower dampti~ than
the conventional type, but even in these the daqjing is

and control cables.
airplane wings of ‘
probably prcduced

,

.
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by solid friction microscopic cracks,
Thus surface effects in the widest sense
that these damping losses C- be treated

3

grain boundaries, and such.
are involved. It is not lUsely
differentially; they can be

taken into acc&n= only integrally and h time-average-for the whole
airplsne. Since it is largely a solid friction that is tivolved, the
dsmping energy per cycle at forced vibrations of a certainmde snd
amplitude h a wide rsage is.nearly independent of the oscillation fre-
quency● Accord- to the Navier-Stokes theorem, fluid friction would
yield dsmping proportional to frequency, hence must be excluded. Struc-
tural damp3ng losses csn be reliably determined only by measurements on
the finished airplane. It is customary to allow for the dsmping energy
iu the theoretical flutter formula by titrcducing a constmt dsmping
phase angle gi in all elastic stresses of a certain’oscillation mode

for conventional airpties, gi ranges from 0.01 to 0.10 (rsd.ians).

h still air, a ltiearly moving wing can exceed its critical speed
without flutterm; it is then in unstable eq.uil.ibriw. Any shock
against such a wing tiitiates the entire natural frequency spectrum,
that is, with a certain distribution of amplitudes and phase angles.

i;

But it &oes not si@fy that this distribu~ion is suita~le for absorbing
energy from the airstresm. When many shocks act on different parts of
the airplane, however, it is increasingly yossible that accidentally the
right distribution of the natural oscillation modes for absorbing energy
from the airstream and initial flutter is excited. This has been observed
in wind-tunnel tests with dynamically shilar models. Msmy cases of flut-
ter were observed only in flight through gusty ati, whereby a great variety
of different shocks are exerted on the airplane. IYornthese observations,
it follows that a certain minimum size of shock is necessary to initiate
flutter. The extent to which this rests on boundsry-layer effects or
overcomtig solid friction is an open question.

When the flutter of an airplane or of a model wing is recorded, the
record often reveals considerable departures from the harmonic or
“sinusoidal”vibration, which may be due to aerodynmnic causes end to
the aforementioned solid friction. For example, there are complicated
control surface forms with titernal balauce, for which the pressures
are not linesrly dependent on the control angle. Such controls may even
flutter h two different partially foreign frequencies simultaneously.
H the angle of attack of a wing at landing or pullout becomes so great
that the flow starts to separate, there is no further clear coordination
between angle of attack and pressure distribution in steady flow. A
rotsry motion of the wing with one degree of freedom is then able to take
up energy from the airstream. A periodic state of oscillation is sus-
tained, which, as a result of the complicated processes in the boundary
layer, is not linear at breakway. ~is tne of flutter has been known
for a long time and has lately been investigated by HalMan, Johnson,
and Haley (ref. 9).
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The airplane engineer does not wish the fully developed flutter;
he would rather prevent it, though it may please some experimenters. He
wants to prove that all.physically possible flutter phenomena, end even
those with very low smplitude, lie outside the permissible speed of his
airplane design. For this purpose, the @rmonic, linearized oscillation
theorem with simplified assumptions regarding air forces snd structural
damping has been utilized successfuUyup’to nowj it is partic-ly
suitable for stability s@dies with arbitrqry small smplitude. The first
attempt involved the problem of making this s~lest case of aeroelasti.city
smenable to mathematical treatment and theoretical solution. !lhLsproblem
is already very difficult and only approximately solvable, as will be
shown in the following. -.

3. THEORY OF STATE! OSCXUUTIONS

The airplane is replaced by an elastornechs.nical~ystem of n point
masses and their connecting elastic members, which satisfy the classical
theory of ela6ticfty. How this substitution is done @ill be disregarded
here. The deformations of such a replacemetit”systemunder given small
forces and psrticular~”the natural vibrations under the mass force6 can
be computed by assuming ~imitel.y small displacements, hence ltieari,za-
tion. A suitable aid for solving this linewri.zedproblem is in matrix
form. Its application-to real (self-adjoined)eigen-value problems in
physics and engineering is generally lmown. Such a problem is involved
here.

-.

A one-row matrix corresponds exactly to a vector ..Yi,a square

matrix to a tensor aik) whereby the first s~bscript (i) is always

coordinated to the rows, the second subscript (k) to the columns. ti
the customary matrix calculus the subscripts are omitted. All these
6ubscriptless “direct” calculi, to which the vector and tensor analysis
themselves belong, are too little smenable to expansion; another ti”awback
is that the significance of many operation signs must be marked smd the
sequence of the factors must not be changed. For the representation of
the deformations of the Ufting surface by polynomials or surface har-
monics as well as their numerical integration by mesas df these functions,
the 6ubscripts are indispensable. Therefore ‘weshall use subscripts,
apart from a temporary application of the”vector analysis in the flow
theory. With respect to factors with identical subscripts or exponents
1, k, and 7, m is added up from 1 to nflso far as.the subscript6
are not bracketed. “This is the on& rule that needs to be followed.

Consider a plate-like wing of.lit~le thicbess divided into n tables
ar “torsionboxes” (cf. Willisms and Mech (ref, 10)); Pi are the forces
and ~k the normal displacements of the n centers of gravity i = 1
to n of these tables. The matrix equations read then ..

.

.

I

..

r
1
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where Pi, ~k one-row matrices with n terms, aik and %Z sque

matrices with n2 terms; aik is the stiffness matrix and bkl the

deformation matrix; both are symmetric. Ey equations (1) d (2)

aikbkz = biz .

1“

“O when i ~t
= (3)

lwheni=z

The deformation matrix bkz is obtained by solving the linesr’

equation system (1) with respect to ~k, when aik is known. For

abbreviation

-1 -1
bki = aik aik = bki (4)

For harmonic oscillation, the displacement of point k is ...

{k ‘ Ak = j~t s =@ (5)

where Ak denotes the complex oscillation smplitude and v the cyclic

frequency. The mass force is therefore ..

= ‘&f(k)@2 exp jvt (6)

with Mk denoting the masses concentrated in point k. me manner by

which a given continuous mass distribution may be best replaced by n
separate masses l% ti n given potits, will be sho~ l_ater. ~
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equilibrium is to exist, the sum of the forces in every point must
disappesr. Multiplying eqmtion (6) by bik/v2 gives, h the absence

of air forces, according to equations (2), (5), (6), the-”prticipal
eqwtion

where

Is termed dymmic matrix snd 1 =
contains an nth order algebraic

of the elastomechanicreplacement
tion. It is obtained by equating

=0 h = l/v2 - (7)

= bi~(k) (8)

l/v2 real eigen value. Equation (7)
equation for the n eigen values At

system, the so-called seculsm equa-
to zero the denomtitor determtient

of the linear equation system (7). The secul& equatioriiG solved
either by ustig the.Graeff process or, if n ““”isgreat,% iteration.
First estimate an amplitude distribution Al of the fundamental fre-—
quency, then resolve the matrix eqmtion

with respect to A’. With this approximate

(9)

value, compute a new smPli-

.

.
tude distribution A; and repeat the process until th= values of ~ ““

and Ail% do no longer vary. This gives the exact solution of the

fundamental frequency mode Ai(l) and of the ei.genvalue Xl. Now the

orthogonality condition —

(10)

is valid for all harmonic oscillations. .—

mom equations (7) and
process, the first harmonic
until all n eigen values

system are obtained.

(10) follows then, by the same iteration
oscillations of the system &d so forth,
hk and oscillation mcdes Ai(k) of the

.

“
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The matrix
computers; they

iterations very

take only a few

—.

7

method is particularly suitable with automatic electronic
can compute all the aforementioned matrix operations and

quickly● Even fox n=
()
~ .55
2

points the operations

hours. This assures a wide range of adaptation of the ‘
replacement system to the actual airplane. The-assumption of elastic
beaus is no longer necessary; even plate-like systems can be treated.
As a rule, it is more conv&ient

according to the design data, as
elasticity theory “ofthin plates
Stein (ref. U.), Fung (ref. 12),

4. TEEORYOF AIR FORCES OF

to-fix the sttifness matrix au

indicatedby Willlsms (ref. 10). The
has been described by Reissner and
and Theodorides (ref. ~).

TEE’OSCILLM!INGLIF!L!XG SURFACE

To resolve aeroelastic problems, a theory of unsteady surface Ls
necessary. Some new advauces in this direction are described in the
following based on references 1, 14, 15, and 16. Assuming perfect,
compressible fluid, the Euler equations for the velocity potential O
and pressure p read

do
Po~+P=Po

POC02A% + $ =

.

PO is air density, co velocity of sound

(n)

o (12)

in still air. Equation (12)

is applicable to very small pressure changes only. me velocity of the
fluid iS u =Ao. The substantial derivation with respect to time is

Let

where v is the velocity of undisturbed
and 0’ the interference flow. Because
rather slowly, as a rule, v = constant

(u)

flow along the positive x axis
the flight spe~ v changes ,
can be assumed. Then



●

(14)
.

h aeroelastic problems it is sufficient to how the correspondtig
very small air forces, since the aim is limited to exploration of the
start of the flutter nechsmism to order to avafd flutter. Hence, the
linearization by assumi& {v’~ << v; the substantial

Equations (14) ti (15) must be inserted in eqwtions
These equations and their solutions can be s~lified
substitutions

—.

derivation-is then

.

(n) and (12).
by the following

—
a-

—.

(16)

X=LX Y= L-y””z’;&z (17)

.

x, Y, Z are ordinary Cartesian coordinates, u.)is the reduced fre-
quency, ~ tlhenuniberof waves; L is a characteristic length, such .

as half maximum wing chord, for example. :.

For harmonic oscillations
.—-.

—.. .—

m=

v Lv exp (Jvt + U$2x)#(x,y,z) + Lvx (18) <

P = pov2 exp (jut + o@x)P*(x,Y,z) +Po (19)

With these
lations become

new variables, the Euler equations for harmonic oscil-
~

.-

() a o*(x,y,z) +p*(x,Y,7i)‘“+x =0

. .

(21)

*
. I
b
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.

(A2+‘2)o*(-’)=0

9

(22)

.

Assume, for the present, an infinitely thin lifting surface, lying
approximately in the plsne z = O, hence as hmdng only infinitely small
deflections c . As boundary condition for the solution of equations (21)
and (22), there is the give& downwash on the lifting surface

d!

‘=%

a#=—
az 2=()

By equations (17), (18), (20), and (23) the reduced downwash on
the lifttig surface is

w+$(x,y)=4;(x,y,o)

(24)

.

.

The solutions of equations (21) and (22) are
in integral form by means of Green’s functions or

nn

usually represented
difference kernels K

j (@*(X,y,Z) = Kl X - X’,y - y’,z)p*(x’,y’,+o)dx’ *’ (25)

J
.—_

P*(X,Y,’) = K2(X -x~,y - y’,z)w++(x’,y’,o)ax’dy’ (26)
..-

The integrals are extended over the lifting surfaces; w++(x’,y’,o)
is the given reduced downwash on the lifting surface; P*(X’,Y’)+O) is
the reduced pressure on the upyer Side of the lifting surface. The
pressure p*(x’,y’,-0) on the bottom side is inversely equal. The
Kernels K1 ad ~ must satisfy the wave eqyation (22), as is readily

apparent. Let F(x,y,z) be a function that satisfies the wave equation

(A2++(-) =0 (27)
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.

and disappears at fnfinity. Qy equation (17) the reduced coordinates
are

F = -ilY E= -Jz real.,if ~>1 (28)

!I!IItithe Kernel K1

K-J%YA

F(x,y,z) =

is generally given by

if $*1 (30)

te p=-1 (31)

Inte~ation of equations (30) and (31), with respect to y and ~
from -m to +~ gives the corresponding functions for plane flow

F(x,z) = - *H:2)(KJG2), if ,.1

F(x,~) = -JJo(.{~), if p> I (33)

where ... ~ are cylindrical functions of zero order.

The surface equation
—

-2X2 -$-2’0 (%)

gives a cone envelope, the so-called Mach cone. .As the.roots in equa-
tions (31) and (33) must always remain real, the range of integration
of equation (25) in the supersonic range ~ > 1 must be limited to the
Mach cone. ‘IbeKernel .% in the supersonic range is



.
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[
K2(%7,Z) = u + ) (J~ Cos K x’L# -z 4

x OF=== “h”‘“

11

(35)

~ equation (35), integration with respect to ~ in plane flow

K2(x,Z) = -,$+ ~).o(.dn+) when. p >1 (36)

Jn the subsonic range @ < 1, no simple formula Tn Cartesian coor-
dinates can be given for Kernel K2, since it is tipo6sible to satisfy
the Kutta wake condition h shuple manner by this procedure. Curvi-
linear orthogonal coordinates (u,v,w) must be introduced, making the
lifting surface itself a member of the family of orthogonal surfaces.

—

Let

x = X(u,v,w)

The auxiliary functions

*-2

V-2

V-2

are defined.

Y= y(u,v,w) z = Z(u,v,w) (37)

\

. (.$$2+-(g)2+(3$21
‘F)2’H2’R)2}
= (g)2+[$)2+($2]

For the three-axial ellipsoid with the half axes a, b, c we
get, for exaple

X2 =

h - ‘2) h - ‘3)

~(u) - e~ @(v) - e~[~(~) - e~
I

k2 - ‘1) F2 - ‘3)

p3 - @(e3 - e2) J

I

(38)

(39)

.-.
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1
3el=b2+c2-2a2

3e2
2=c2+a - ~2

3e5 = a2 + b2 - 2C2

.

(40) I

(41)

~ is the elJ.ipticfunction of Weierstrass. For the elliptic lifting

orthogonal coordinates, wave equation (27) becomes

-7

surface c = O. h

In the ca6es involved
ration of the variables

here, this equation csm be resolved by sepa-—

F = ~(U)~(V,W)

.

(43) “

The coordinate u = constant is to denote a convex surface, u = O
the lifting surface, upper and lower side, Rn(u) a retarded solution

of the wave equation (42), which disappears for u = m. The functions
~ (v,w) me then so-called surface harmonics of the surface u = constantj

they satisfy the orthogonality relation

1’ {
O,if n~m

~(V,W)~(V,W)~ dv dw =
knjif n=m

(44)

—

The plane element is
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The integral can be extended over an arbitrary surface u = con6tant,
because U/VW is independent of u, if the separation of the variable6
is possible. (Cf. eq. (41).) The surface coordinate V,W shall be
unequivocal at least in certain rsmges, as for exsrrrple,the geographic
coordinates of the sphere in the ranges

0<

The coordinate w = O

v<%,. :<w<+;

denotes the plane of 6ymmetry, normal to the
lifting surface, psrallel to the flight direction, the eq=torial plane,
the coord@te u =v=O thelesdingedgeand u=O, V=YC the
trailing edge of the lifting surface. The elliptic coordinates given
in eqpation (39) still are smbiguous, but can be made unequivocal by
introduction of the Weier6trass elliptic IS functions.

Introducing, for abbreviation, the differential operators

(45)

Then there follows for the difference kernels K1 smd K2 of the

integrals (25), (26) the differential equations

~K=~K=O (46)

TO satisfy these conditions in
too, the characteristic function

G(u,v,w;v’,w~) = L
11=1

is introduced.

curvilinear orthogonal coordinates

q(u)
~“ %l(v,w)~(v’ ,W’) (47)

‘Bydefinition this function satisfies wave eq~tion (42); it further
shall satisfy the compatibility condition

—
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GJo,fi,o;v’,w’), Gvr(u,v,w;o,o)
CIDxG = C@yG *

I

(48)
~(o,o,o;v’,w’ ), Gv,(u,v,w;fi,O)

By appropriate normalization of G the constant Cl can be me

equal to unity. Then the Kernel K2 in the subsonic range j3< 1 can
be represented as follows. (Cf. re~. 16.)

{)~ -&@,v,w;v’,wl)+K2=-A1 m-
{

‘1

1}
Gvi(u,v,w;O,O][Gv(O,fi,O;v’,w’)TI(k;a) - Gv(O,O,O;V’,W’)

{( )
b G(u,v, ,K2=-A2 u-~ W“vf,w’) +

[. 1}%,(U,V)W;fi,())~(o,fi,o;v’,w’) - ~(O,O,O;v’ )wr)T2(~,u)

J

/-m-ti 2
exp mx(u,O,O)~~ (u,O,O;n,0)V(u,o,o) du

Tl(tc,u)=
-M-f-ire2 U(u,o,o)

I

-ti/2 V(u,o,o) du
exp ax(u,O,O)~~ (u,O,O;O,O)

-*ti/2 U(u,o,o)

I
‘=-ill/2 V(ujo,o) du

exp ux(u,o,o)G@ (u,fi,o;o,o)
-@+ti/2 U(u,o,o)

T2(~,u) =

I

w-*/2 —
V-(i,o,o)duexp aX(U,O,O)GWl(U~YC~O;fi)O)

-%-iJ-c/2 U(u,o,o)

(49)

m)

(51)

These equations hold for complex values of v, K1- w corresponding
to equation (16), i.e., for damped ad amplified oscillations also.

For lifting surfaces having a symmetry axis x = z-= O, for the
elliptic lifting surface, for example, ~ = -T2. For the constants Al

and A2 in equation (49), the following condition is applicable

.

.

.

.
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1= J a
‘i*:~z

)

G(ujv,w;v’,W’)
Al+%

=
J

GU(O,V,W;V’,W’) &V dW

(52)

The inte~and must be a Dirac 5 function

O,if v~vt or w~w*
GU(O,V,W;V’,W’) =

}
(53)

m,jfv. v’ &w. w’

The conditions (52), (53) are such that the Kernel closely related
with K2 of the inte~al representation of the velocity potential as
function of the downwash always reproduces the given downwash on the
lifting surface. (Cf. ref. 15.) 3% both the leading smd trailing edge
of the lifting surface are in uniform flow, we get

Al ‘%2 (%)

hence zero lift in steady flow. Wsteady motion of lifting surface
creates additional members, uong them the aforementioned Kelvin hnpulses,
which are acceleration forces of the comoving fluid. The solution (54)
is termed Kelvin solution; in the 19th century it was regarded as a para-
dox of hydrodynamics. Experiments prove that the Kelvin flow occurs at
the start of the motion, but is soon changed by the boundary layer of
the lifttig surface. Kutta therefore made the phenomenological assumption
of

of
up
is

the

smooth ~lowoff at the trailing edge, which l-&ds to the–constazrt -

A2=0 (55)

Kutta’s solution (55) gives a 20- to 30-percent high% cticulation
the lifting surface; every steady and unsteady lifting surface theory
to now rests on this solution. However, actually the trailing edge
in a weak flow, so that

A second conditional

general solution (49)

A~>A2>o (56)

eqyation for the constants Al and A2 of

might be gained either from an unsteady
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boundary-layer theory or from measurements of the urmteady pressure dis-
tribution. But the viscosity of the fluid discounted
makes itself felt considerably in the final result.

.

5. TWO-DIMENSIONAL SOLUTIONS

case

for the present

The wave functions ~ and ~ are not well ko.o-tiexcept for the

of the strip and the circulsr plate.

For the strip, there are the coordinates of the elliptic cylinder

x==coshucosvy =WZ =Sinhufiinv)

U-2 . V-2 = Sinh%l + sin%, “w =

With these coordinates, the characteristic
dimensional flow reads

function for two-

m

5 ‘ “-””””””
I!k#(k,u)

G(u,v,v’) = s~(K,v)s+Jtc,v’), if w > 0
n= RLJ2)’(K)O)

G(u,v,v’) = cosh U - COS(V - @)ifK=o
twcoshu - COS(V+~

Nen smd Sen are Mathieu functions in
employs the paraeter q . Ic2/k. The tables
these functions in a different norm with the

the Goldstein norm.
of the NBS (ref. 17)
parsmeter s = ic2.

(57)

(58)

(59)

Mclachlan

contain

.

.

BY eqmtions (26), (50), and (58), the Kutta condition (55) gives the
reduced pressure. (Cf. ref. 14.)

f

7(

p*(u,v) =-2 {(l#(O,V’)Sin V’ dv’ u-. 1 a
7(0 )G(u,v,v’) +

sin Vr SF

[ 1}
GV,(U,V,O) Gv(O,fi,v’)T(K,u)- Gv(O,O,V’) (60)

.
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.

.

.

(61)
J

Cra.ti /2
exP (a cosh u)~l(u, O,fi)du

T(~,m) = ‘*j*/2

J

/m-fi 2

exp (-a cosh u)GWl(u, O,O)du
-*ti/2

.

For K = O, i.e., for ticompressible fluid, the characteristic
function (59) is inserted in equation (6o), so that the solution becomes,
term by term, the Kiissner-Schwarzsolution. (Cf. refs. 1 and 14.) For
K = 0, there are large five-@&ce tables of the aerodynamic coefficients
of the wing with aileron snd tab on the assmption of the bent flat plate
as substitute system. (Cf. ref. 11.) For K >0, Blanch and Fettis
(ref. 18), as well as !Mmmsm, van de Vooren, smd Greidanus (ref. 19), have
published five-place tables of coefficients for the flat plate and

and
the

the

Amsterdsm (ref. 19a) also for the bent flat plate.

For small aspect-ratio wings, such as tapered delta wings, the speed
pressure changes in x direction CSZIbe approximately disregarded
so eliminate compliance with the flowoff condition. By utilizing
orthogonal coordinates

Y = cosh U

Kernel K. becomes then

of the wave e@ation

Cos v Z=simllu

approximately equl

K2(u,v,v’) = -: G(u,v,v’)

.-

Shl v (62)

to the regular solution

(63)

where G is the function given in equation (58). Equation (63) holds
for all Mach numbers P. The lifting surface with its given downwash
distribution is divided ti separate strips parallel to the y axis;
each strip being treated according to equations (26) and (63). Corres-
ponding solutions and tables have been computed by Merbt and Landahl
(ref. 20). How far the approximation (63), which equation (46) does no
longer satisfy, is practicable must be left to exact solutions.

6. THREE-DIMENSIONAL SOLUTIONS

For K = O, the wave eqution reduces to Laplace’s potential eqw-
tion. For the cticular plate, the solutions are spherical functions and
for the elliptic plate the lkm~ functions, so that corresponding charac-
teristic functions csm be set q. For the circular plate, Schs,de(ref. 21)
computed solutions with sphertcal functions by a complicated procedure.
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When ~ >0, solutions for the circular plate can be computed with
spheroid functions developed by Metier. For the elliptic plate, which
is of greater aeronautical interest, the corresponding wave functions
are still lacking.

Ktissner(ref. 21a), Reissner (refs. 22 and 23), and Dengler-Goland
(ref. 23a) have published appr~ximate solutions patterned after Prandtl’s
vortex filsment theory for high aspect-ratio wings. The closed solution
of the two-dtiensionalproblem of airfoil theory is assumed known and a
correction of this solution is computed by resolving one or more linear
titegral equations. When the Wronsky determinmt of the cylindrical
functions is taken tito consideration, the theories of Ktissner(ref. 21a)
and Reissner (ref. 22) sxe identical in every respect. For incompressible
fluid tc= O, the method is tested. But for ~ >0 it is very complicated
and has not been carried through numerically up to now. Compressibility
effects, in aeroelastic problems, do not make themselves felt appreciably
until @ >0.7 (ref. 3). This is the reason for the practical results
obtained thus far with the wing-flutter theory at the ~ressures im the
range O <~ <0.7 computed for ~ = O.

In the supersonic rsnge p > 1, the Kernel K2 is lmown in the eimple

form (eqs● (35) ~ (36)); hence the many tables of the aerodynamic coef-
ficients for plane flow available now (cf. Weber, refs. 23b and 5), as well
as three-dimensional solutions for rectangular, triangular, and swept-
wing configurations. (Cf. Watkins (ref. 8); Lomax, Heaslet, sad Fuller
(ref. 24); Nelson (ref. 25); Watktis and Berman (ref. 26); Miles (ref. 27);
Walsh, Zartarian, and Voss (ref. 27a).) H the flutter study involves
thin plates - a pro,blemparticularly posed in the supersonic range - the
integrations of equations (26) and (35) must be made from case to case,
corresponding to the wing contour and the number of points of the elasto-
mechanical deformation matrix. This is app~ent from the flutter theory
developed f~ther on. Solutions for ~ = 1 sre most easily obtained from
the supersonic solution by the boundary transition ~al. (Cf. refs. 28,
29, and 30.)

.

.’

.

.

7. mmlloVmmNTANDlzxJ?mIMENTALCHINK OF TEEORY

~ incompressiblefluid (~ = O) and two-dimensional flow, profiles
of finite thiclmess can be treated as unsteady by the conventional methods .
of mapping (refs. 31 and 32). Numerical solutions for small oscillations
have been computed by Couchet (ref. 33). The hope of obtaining aerod-
ynamicforces that are in better agreement with experiments has not been
fulfilled at all, or only in a small part. (Cf. ref. 34.) Ih fact, if
a frictionless airfoil theory is to be maintained at all, it seems .

edvisable to relinquish the Kutta condition. A possible improvement of

.
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theory by the
stant $/Al

Drescher

general solution
has been pointed

(49) with the phenomenological con-
out previously.

(ref. 35) measured the pressure distribution of an oscil-
lating w- with control surface in plane flow in the water tunnel and
compared it tith lWting surface theory at ~ = O. The smount and the
phase angle of the differences vary very little in the reduced frequencies
range m = O to 2.5; this means that the differences correspond to those
in steady flow. Similar results for total lift and moment of a rigid
oscillating ah?foil have been obtained by Greidsnus, vau de Vooren, end
Bergh (ref. 36) in wind-tunnel tests. me Kelvin hupulses were measured
at v = O; they sxe in fatily exact a~eement with theory, up to a small.
additional dsmping portion. D&r (refs. 34 and 37) studied the flutter
of a wing with and without aileron in plane flow in the wind tunnel and
found’ageauent in several cases between computed snd measured cri~ical
speeds afier multiplyhg the theoretical pressures by the reduction
factor q = 0.7. Howeverj this agreement is contingent upon the choice
of mean camber line used as theoretical basis for the aileron with
internal balsnce. The ~ertiental findings may be attributable to
profile shape effects or to boundary-lsyer effects. A new theory which
accounts for both is therefore destiable.

8. MATR~THEORYOF I%ENGFINTTER

The earlier flutter theory has been described h several compre-
hensive reports (refs. 1, 4 and 5); they chiefly rest on the replacement
of the elasto-mechanical system of the wing by m elastic beam and on
the assmnption of plane flow past the Individual wing sections. It
results in a systm of linear differential equations that can be solved
with SZIYdestied de~ee of accuracy by iteration. These stiplifying
ass~tions suggested themselves as a result of the wing design of the
the on the one hszd smd the absence of large malog computers on the
other. The demands of flutter theory are one of the driving forces h
the evolution of the first automatic computers in Germany and the U.S.A.,
of which a considerable number is now available. This circumstance has
led to a marked improvement of the elasto-mechsmical substitution system
and of the theory of natural oscillations of the airplane. And here is
where the matrix calculation is particularly sutted. The first step
that must be taken is to @rove the aerodynamic principles of the flutter
theory. The aerodynamic forces which must be insert~ in the principal
eqyation (7) in order to’be able to resolve aeroelastic problems, must
also be represented in matrix form. This is theoretically possible, as
soon as the Kernel ~ in equation (26) is known.
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lifting surface must be repre-
given class of functions

F(x,y; r,s) (64)

which are regular in the rage of the lifting surface, i.e., finite,
continuous and differentiable;x and y are the reduced coordinates
introduced in equation (17); r smd e are integral parameters, stsrting
with r=s=O. The reduced displacement !* of the lifting surface
is developed with respect to a series of functions F by means of the
formula

C*(X,Y) *“O~ri+s~<m= F(x,Y;ri,si)gfi!k?

()
~~ are the given displacements h n = ‘~ 1 chosen ptits

(65)

@’@
of the lifting surface. The functions F and the point coordti-atesare
so chosen that their determinant

[( )/det F xk)yk;ri$si ~o (65a)

.

Ey equation (65), the insertion of the coordinates x =X1, y =yZ

gives the relation
.

F(xz)Yz;r@&3ik = ~zk

and with the abbreviations set up in equations (3) and (4) the matrix

‘ik [( i
-1= F xk)yk;ri>si (66)

The representations (65) end (66) are exact, when the function ~*(x,y)
belongs to class (64) and of lower than mth order; otheiwise, it is
approximately valid. When the lifting surface displacement !* contains
a discontinuity due to a bend in the control surface, two separate rela-
tions must be established and then later combined along the control *
surface axis.

.
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Integration of equation (65) with respect to the lifting surface
gives the well known numerical integration fozmmla

.

with the weight factors

ak .
‘ik J(

F x,y;ri,si)dx @

(67)

(68) ‘

When f(x,y) = !*(x,Y) is an arbitrary function of the class (64)
and of lower thsn mth order, eq~tion (67) is exactly valid, otherwise
approximately, the error can be computed by Mises’ method (ref. 38).

In numerical integrations polynomials, i.e., linear forms of the
function

F(x,y;r,s) = x$~ Osr+s<m (69)

are generally employed. When the lifting surface u = O is given in.
curvilinear orthogonal coordinates, it is, however, more advantageous to
utilize linear forms of the function class -...—

F(%Y;r@k) = U(o,v,w)sk(v,w) (70)

in which ~ are the previously introduced surface harmonics. These
functions too are regular in the entire lifting surface range.

Assume an arbitrary integrable mass distribution tn(x,y) over the
lifting surface. This is to be replaced by n stigle masses ~ in

the points (~,yk) in such a way that the total masses, static moments,

moments of inertia, etc. of both distributions correspond. This condi-
tion is met when

‘@’(x@k;r@ =J(F x,y;ri,si)m(x,Y)dx @ (71)
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.

Equation (72) is similsr to eqmtion (68). h contrast to the
aforementioned function f(x,y) which must be regu.ls&,function rn(x,y)
in equations (71) and (72) may also contain Integrable singularities
(singlemasses). These integrals are called Stieltjes integrals. When
the reduced coordinates eqyation (17) are used, the r&ht-hsmd side of

equation (72) must be multiplied by L21~~2, in order to obtain
physical masses on the left.

The ssme procedure is used for the replacement of’the pressure
distribution by n single forces. Assuming an aerodynamic replacement
force of

Pk =
q (& +‘2x(k))%

equations (19), (72), and (~) give the reduced replacement force

(73 )

(74)
--

Iimertion of equations (24), (26), and (65) in eqpation (74) gives

$ (x. - X’,y - y’,o)

(7!3)

(76)
.

The factor 2 in eqwtions (74) and (76) is based on the fact that
the integration covers only the uppeh side (z = +0) OT the lifting stiface,
while the pressures on both sides of the lifting surface me tiversely
equl. lh the supersonic range 13>1, the Kernel ~ is always lmown

and given by equations (35) and (36) in c&tesian co&&nates x and y. -
Therefore, it is best to use polynomials in x and y as develo~ent

.
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functions. (Cf. eq. (69). ) h the subsonic range P <1, the problem
is more difficult. Curvilinear orthogonal coordinates (37) function
class (70) must be used as development functions. Partial integration
of eqyation (76) gives the aerodynamic matrix

Due to the insertion of the Kernel & accordingto equation (49) h
eqwtion (v), all titegrations can be carried out in closed formby
means of the orthogonality relations (44). The integrations are extended
over the entire orthogonal surface u = O, i.e., both sides of the lifting
surface. Thus, matrix ~Z can be computed from a lhited number of ~—-
values, according to equation (44), and of the wave function values
appeming in eqution (49). b the case of a hinged aileron, hence unsteady
deflection L*, the tite~ations over both areas of the lifting surface
must be made separately. Equation (44) is then no longer applicable and
infinite series me obtained. Only fiplane flow c~those inte~ations
be csrried out in closed form.

E’ the Kernel ~ is not known, the integrodifferential equation

W++(x,y)= ,*$ +~c*(x,Y)

Ja“
=lim — K1 (X -xf,y- yr,z)p*(x,yj + O)dxl dyx (78)

z+ &

followhg from equations (24) smd (25), must be resolved, where ~ is

given by equations (29) and (30)

Integrating while using equation (27) gives

!*(X,Y) = J %(X - x’,y - Y’)P*(xt)Y’~ + o)~l m’ (79)
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If the Kernel ~ were regular everywhere, it cauld be used

development function F and equations (74), (75), smd”(79) would
immediatelyyield the aerodynamic matrix

as

then

But Kernel Ko(x,y) has a s~ularity at x = y : 0. The reverse

problem must therefore be solved some other way,
discussed here.

which cannot be

-.
The sum of the reduced mass and aerodynamic

to equations (6), (23), (73), a (75)
forces is, according

i

. ‘1

.

.-.

(a) -
POV2L2

q=-m(k)v~g +— - # !kz~~1

—
On the other hand, ela6t0-meCh~iCalW, -We get by eqwtionB (2),

(23), ~ (73)

bik =b(i~p @2(~- q

Multiplying equation (81) by b’
ik/

V2L and inserting it in equa-

tion (82) gives the principal equation of the flutter theory

._

(82)

(83)

(84) -

“
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.

.

.

.

.

.

The parsmeter y has
tion (84) becomes eqyation
equation for defining the

(85)

the dimension of a mass. When M = 0, equa-
(7). Equation (84) is the desired matrix
n eigen values xi, of the oscillating wing.

9. ANALYTICAL SOLUTION METHOD

can be computed.for givenThe bracketed matrices in equation (84)
values of K an$ u and are complex. Hence, it seems logical to ‘
consider eqpation (84) as a complex eigen-value problem, whereby the
aerodynamic matrix is not selY-ad50tied. Prior to 1943, little was known
about complex eigen-value problems. Since then, Wielandt (ref. 39) has
developed appropriate iteration methods for calculating complex eigen
values and proved theti convergence.
this procedure and proved it again.

Recently, Gossard (ref. 40) applied

Equation (&) thus yields a set
azimuth singleis the asanuedly Mown

of complex eigen values whose
damping phase angle gi

(85)

These physical solutions are obtained from the ~oup of mathematical
solutions by ~aphical interpolation, ~~(K,m) being plotted in the

complex numerical.plane. The critical speed vi is computed from the
obtained values vi, ~, and m, according to eqmtion (16). The check
on whether

P .VL=E
co al (87)

conformE with the assumption is made by graphical method. And, since
the airplane is to fly at different altitudes, the air density PO must

be varied too.

me conditions (86) smd (87) confine the physically possible solutions
materially, so that often no physical solution is found in the explored
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speed range. This is exactly what the aeronautical engineer wants. To
.

be on the safe side, however, he would still have to vary the most impor-
tant psmmeters of the airplane with their ltiits of error and manufac-
turing tolermces. This car.be done by one of the cu~tmary disturbance

.

calculations, without having to repeat the whole calculation (ref. 4).
It might be noted that Wielandt (ref. hl) has developed mathematical
methods for esttiting the upper and lower limits of the complex eigen
values xi, when the principal equation (~) is given. When these limits
meet the technical requirements, the solution of the characteristic value
problem can be omitted.

Bearing
follows from

The sum
according to

Flutter

in mind the structural damping, the reduced elastic force
equations (l), (20), and (73) at

of the elastic, mass and aerodynamic forces is then,
eqwtions (81) and (88)

is generally initiated by small external Forces. Hence,

(88) ‘-

(89)

the thought lies close to introduce a given periodic outside force
%

as titerferencefunction in equation (89), such as ~ = ~, for example, -

or a force distribution representing a given “sinusoidall~gust. The
amplitudes ~~(v,v) of the lifting surfaces can then be computed as

functions of’the frequency and speed from the inhomogeneous equation
system (89).

Near the critical flight attitude, the amplitudes increase consid-
erably and become infinite h the flutter range by reasen of the disap-
pearance of the denominator determinant of eqmtion (89). ~is method
also affords a compl-etesurvey on the flutter behavior of an a&plsme.
This methd is especially favored in Russia. It may also be used for
investigating the effect of atmospheric turbulence, by analyzing it
harmonically and posting it on the right-hand side of equation (89).
The harmonic components of the elastic stresses
deflections are statistically superposed.

The six degrees of freedom of the aircraft
well as the free control surface notations must

calculated from the wing

i
motion & a rigid body as
also be borne in mind in

.
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every flutter study. Up to now, the theory of path motions of airplsnes
rested on these degees of freedom. However, no sharp boundaries between
flight stability, flutter, and gust stresfiescan be drawn; there are msmy
transition modes. Collar (ref. 42) said: “h short, it is evidYentthat
we sxe no longer dealing with a series of subjects each in its own water-
tight compartment: there is a definite coalescence of the subjects into
an integrated whole, which may be defined as the dynamics of a deformable
airplsme. And we me faced with the question: what are to be our methods
of treatment of this untiied problem?”

Rea (ref. 43) demonstrated howby Mplachn transform all t~ee
domains of aeroelasticity can be jointly treated (TrsmsferFunction-
Fourier Method). The transfer function of a dynamic systa transforms
the input into output, for exsmple, control hinge moment into tail sur-
face force. For the nmerical solution of these and, in fact, of all
ltiearized problems, the use of electrical analogies is recommended.
They rest on the formal similarity of the differential equations of an
ordinary linear mechanical system with a finite number of degrees of
freedom (Lawange’s eqyations) sad the differential eqpations of a ltiesr
electric network (Kirchhoff’slaw). The displacements represent the
electric voltages, the generalized forces, and the electric currents.
For conservative systems, the analogous electrical network contains only
passive elements, resistance, capacitance, inductance, and transformer.
When air forces are involved too, simplifiersmust be ticluded.

The solution, h ckacteristic value problems of flutter theory,
is obtained by connecttig periodic interference currents ~ with the

network and measming the currents and voltages. One particular advan-
tage of such analogy devices is that structural changes in the”netwak
can be easily copied in the design stage of the aircraft. The error of
measurement ticreases nearly with the root of the degrees of freedom,
therefore, is still conservative even for 100 degrees of freedom. McNeal,
McCann, and Wilts (ref. ~) described the analogy setup developed at the
California 3nstitute of !l!echnolo~which carried out flutter calculations
with 70 degrees of freedom.

The stability of the solutions of linear differential equations is
def,inedby Routh’s criterion; but it becomes inconvenient with a large
number of degrees of freedom. Nyquist, therefore, subjected the differ-
ential equations to a Laplacian transform and developed its characteristic
equation in powers of I@.acian operators. !lhestability of the solutions
of the particular system can then be proved by a simple theoretical func-
tion operation. ~quist’s method has been used for some time h electro-
technics, and has been applied also to flutter calculations by Dug&dji
(ref. 45).
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The covertig of an airplane usually consists of thin sheet panels
attached to frsmes; they can perform aeroelastic oscillations even on
a rigid frsme. To the etient that the problem can be linearized and the
wing covering is approximately flat, this @ye of flutter could also be
treated by the matrix method developed in section 8. However, this would
require the assumption of a rather Urge number of degrees of freedom
(points),and so the solutionof very great matrices.

.

.-

For this reasonwe examine a simpler, ideal case, namely, the infi-
nitely flat thin elastic plate, pin supported on an infinite rectangular
lattice framework with the Spacti-gs 21 and 22. The mean normal

stresses ~/h and T~h and the plate shearing stress S/h maybe
regarded as constant for
frsmework is immovable.
mass per unit area. The
reads then

very small deflections ~, even if the lattice
The plate is of h thiclmesss and M is the
linear differential equation~ref. 46) for ~

x, y, and z are ordinary cartesian coordinates; z
positive upwards. Compressive stresses are computed
bending stiffness

In(-i
B

h3
=—.

16
exp fg

m-

-II(x,y,t) (9)

and C are counted
.

positive. The

.

(91) “-

is assumed complex for
dsmping. The pressure

pericdi.cprocesses, to allow for’structural
jump on the plate is

II(x,y,t) ‘ p(x,y, + O,t) - p(x,y, - O,t) -1-~ 6(X - n21]-Q&,t) -f-
n=-~

—.

(92)
.

.

,
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P = aerodynamic pressure, 5(x) Diracfs b

normal force per unit length exerted on the

29

function, C&(x,t) the

mth bulkhead (longitudinal—
member) of the lattice framework. ~ the subsequently involved periodic
solutions, the functions (& end ~ repeat after each two steps.
Equation (90) is solved by the substitution

t (x,Y,t) = ‘@e’ rr ‘.s ( )
exp iv-t+ ir~x + jsk~

1

(93)-m -m

12 =ij=J2 =-1

&~ sre hypercomplex constants; in addition

~ = fi/z~ k2 =fi/z*

Continual support of the plate on the lattice frame is contingent
upon

m

FE ‘2r,2s =
-m -m

m m

EC ‘2r,26+1
-m -

m

5E
-co -m

‘21+1,2S= 0
\

m m

= x~ ‘2r+l>26+l = 0
-m - J

(94)

The individual members of (93) represent traveling waves moving in
x direction at speed -v/rkl. The air strikes the upper side of the

plate at constant speed v along the pos;tive x axis, while still air
prevails at the lower side. A new system of coordinates

Vt
;=x+—

rkl 7 ‘Y Z=z (95)
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that moves along with the
scored coordinate system,
the static wave r is in

the lower side at speed

,For ~ = O, equation (22)
potential
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traveling wave r is introduced. h the over-
.

a steady flow probla exists, the upper side of
stresmwise flow at speed .

v
vo=v+~

—

v~u=— —
rkl

gives the ’differentialequation of the velocity

~.

from equation (23) follows the

w(x,~) =

(96)

boundary condition for ~ = O

o~(z,y,o) =w~(x,y) (97) -

By equations (11) and (15), the pressure on the upper-side of the plate is ‘

p(z,y, + o) = -pom~(x,rj i-o)+po (98)

The particular deflection of the plate is assumed as

and the corresponding

~ (X,y) = exp(irkl~ + jsk~-)

velocity potential for Z 2 0 as

(99)

.
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As a result of eqwtions (96) to (lo~)~ the P~tictiw pressme is then

with

(102)

.

when the radicand is ~, and

po%rJRI <
Brs(~) = -

J-

(103)

when the radicand is <O.

Putttig eqyations (92), (93), (95), (99), ~ (101) fi eq~tion (~)~
multiply= by

(
exp -irklx

and integrating with respect to x,y
coefficients

%s

% =

= rco -i-(.-l)%l +

(r%:+S%$B -

- WL-&)

from -m to +~, yields the

1(-1)SC2 prs)-l (104)

s21@2+%sf+&) +4@

The ~ercomplex constsnts determine the type of the solutions.
Corresponding to the support conditions (9), there sxe four different



I

.

32
—

NACA !IM1402

types of form changes, hence four types of flutter. “&ly the straight .

oscillation modes are considered here. By equations ‘(~) and (104)

.

(106)

—

Energy absorption from the airstream md flutter--ispossible only
when at least one of the coefficients E$s becomes imaginary. (Cf

eq. (103);) Equation (106) then becomes complex, from which follow two real
equations for the determination of the eigen values v and v. For
v = g = 0, only static instability is possible in the subsonic range,
but no flutter. By equation (102) all coefficients I$s are then real,

hence the sole result is a real equation (106) for computing the critical
speed v. When

stiultaneously,
any number.

Hedgepeth,
tive theory for
the fundamental

at least two func-iions Nrs of the s~e p~ity disappear

equation (1o6) itself is satisfied, since CO-m canbe

Budians@, and Leonard (ref. 47) developed a repres&ta-
plane flow (k2 = 0) and computed the stability range of
oscillations r = -2,0,2 for a large nmber of parametric

values on the basis of the Nyquist diawsm ‘(ref.45). They found that
structural dsmping g could lower the stability range under certain
conditions. The limitation to fundamental oscillations for reasons of .

simplicity is a first approximation. The support reactions of the lattice
frsme cause discontinuities of the higher derivatives of the deformation
sxea ~(x,y,t), to whose representation Fourier swies with infinitely

.

msny terms corresponding to (93) are required theoretically. Since Nrs

is a 4th order polynomial h r and s, the series (1o6) converge fairly
rapidly.

When external air forces T >0 act on the plate or it is heated
by skin friction, the plate can buckle statically even without air forces.
By equation (90) the differential
reads

eqyation of the static plate (ref. 46)

(107)

—



F

.

.

.

NACA TM 1402

lhserting eqyation (93) in (107) gives

A
~%

r2 2
)

+ s2k~ % - r2k$T1
rs

- 2rsk1k$ -
1

s2~T2 = O

Ftiite amplitudes Ars axe possible only when the bracketed

33

(108)

term
b equation (1o8) disappears, i.e., when T1 and T2 have a critical

ma~itude. ~ these increase gradually, buckling will follow at the
smallest possible values of r and s, and a corresponding static wave
field will be the result. Visualizing this wave field in a flow along
x at speed v, its ste@y pressure distribution can be computed by
equation (101), where x = x, ~ = v, v = O. The aerodynamic forces
continue to deform the given wavy plate until a new state of equilibrium
is reached or, fail- that, until the waves change into opposite posi-
tion (~+ ~). This loss of static stability is a supersonic phenomenon
which comes into being through the change in sign of the radicand in
equation (103). Ih the subsonic range the aerodynamic forces generally
have a stabilizing effect on a static wave fie~y with exception of the
aforementioned case of static instability, where a monotonic @rease in
wave height occurs until the ltiearized formula (go) becomes inapplicable.

Fung (ref. 48) investigated the static stability of a s~~oidal
half wave in two-dimensional supersonic flow (k2 = 0, v >Co); however,
his theory is identical with that of an infinite wave field. By assuming
immovable supports and finite small smplitude, the problem becomes
nonlinear with respect to the deflections, but still Ilnesr enough approx-
imately as far as aerodynamic pressure Is concerned. The critical speed
of static instability is so much lower as the initial amplitude of the
wave field is lower. Because the opposite position (~s~) of the
changed panel field has just as little stability, a complicated peridic
process develops which is not harmonic and could not be calculated up
to now. Such a process would lead to a rapid destruction of the shell
(or skin) as observed on ~ V-2 rockets. Skin buckl.tigon supersonic
airplanes ti all flight attitudes should therefore be prevent~ by appro-
priate design measures.

To the extent that the ideal case of the infinite plate with lattice
frsme investigated here is applicable to real aircraft, skin flutter can
be considered as a typical supersonic phenomenon. Flutter processes cau
occur only below the critical speed of static instability.

.
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11. S~TIC! OSCILLATION TEST

NACA TM 1402

e I
.

The static oscillation test on airplanes is the oldest and most
extensively employed expertiental method of aeroelasticity. Stice
flutter occurs mostly near static oscillation frequ~cies, the static
oscillation test originally served to detect oscillation modes suspected of
flutter, later on lsrgely as experimental check of the desm regulations Z
and II as a safeguard against flutter. Owing to the complicated structure
of aircraft, there was no other possible way to meet these requirements.

The measured static oscillation modes” Fi(X,Y) were utilized occa-
sionally as stsmting function for the flutter theory, i.e., the wing
deflections ~ were represented as ltiear modes of Fi(x,y). The mass

distribution m(xjy) of the wing is comparatively easy to define from
the design drawing, from which the substitute masses Mk in n selected
potits canbe computed by equation (72). &?ter imserting Fi(~,Yk),

Mk, and the measured natural frequencies vi in equations (1), (5), and

(6), the stiffness matrix aik can be computed without having to make

stiffness measurements or calculations with their attendant sources of -
errors ad approximations. To be on the safe side, every measured static
oscillation mode from the first to the nth should be introduced as degrees
of freedom, which appears possible by electronic computers. W order to
be able to carry out this procedure, the measured static oscillation mciles
must, first, be corrected sad orthogonalized (ref. 48a).

For the static oscillation tests, the readied airplane is suspended
in a hanger from very soft springs or else mounted on.a suitable elastic .

base and excited in one or more points by oscillators with slowly
ticreasing frequency. At the natural frequencies Vi, the ampli-
tudes Fi(P) are maximum. !lhesecan be measured or recorded successively
and thus give a complete survey of the static oscillation modes Fi(P) .

of the airplane, P denoting ~ one point of the a&lane.
.

The original osci~tors were rotating unbalanced masses. But they
were later replaced by electrodymnic oscillators, which are more accurate
and easier to use. More recent oscillators are those developed by Herschel-
Schweizerhof (ref. 49) and compared in an article by de Vries (ref. 50).
originally, the amplitudes were read from so-called oscillometersmounted
at several points of the airplane, which were replaced later on by
commercial electrical pickup and recording tistruments (ref. 5). These
pickups sre either accelerometers operating with piezoelectric crystals,
strain gages, or acceleration-responsiveelectron tubes; or else they are
speedometers operating with induction coils. Accelerations and speeds .

are changed to deflections by electrical integration switches. Direct
recording strain gages are suitable for elongation measurements. .
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These electrical tistruments speed up the natural oscillation mode
measurements, increase their accuxacy, and make phase angle measurements

. possible (ref. 51). Only the natural oscillation excited in resonance

/has the phase position ‘fi2 + M relative to excitation, while other
accidentally excited oscillations have the phase position *O + h and
csm be int&preted as disturbances and elim--ted= The
of the excitation energy also enables the damping phase

determtied when the generalized mass of the oscillating

is
on

w. ‘~ F~(P)m(P)
P“

known. This can be obtained by application of known
the-oscillating system and by frequency measurements

exact measurement
angle gi to be

system

additional masses
(refs. 52 and 5?a). “

12. MODEL TESTS

—.

When an experimental clarification of the most important aeroelastic
problems is demanded before a new type of aircraft is finished, a dynam-
ically similar moiel of the plsmned airplane can be built. Its purpose
may be the determination of the static oscillations, and can be met by

. the mathematical problem described in section 3. me outside of the
model does not have to be geometrically similar to the full-scale design;
the covering may be dispensed with under certain conditions..

But in wird-tunnel model tests for the determination of the critical
speed or the proof of flutter freedom, an externally geometrically and
internally dynamically similar mdel is necesssxg. This probkn calls
for a model scale that is not too small and generam also a far-reaching
geometrical shnilarity of the internal construction. When compressibility
effects are involved, the ratio of the sonic velocities of the structural
material and of the flowing medium must agree. In wifi tunnels with air
media this practically indicates aluminum as model material.

It is difficult to meet all these requirements. me first dynamically
similar models built in Germany were therefore still rather fsr from the
dynsmical similarity with full-scale design. Substantial improvements
were attained by the tendency toward external and internal geometric simi-
larity with the use of adhesive plastics such as Vtiidur and &esive thin
alminum sheets. They are available in the U.S.A. h finely gaged thtck-

. ness for model designs. Even small forming rollers are utilized for such
strips. Such models can actually be regarded as miniature copies of full-
scale versions. Kinnsman (ref. 53) gives an insight into the model testing

. technique of the Ibeing Co., which prefers a cheaper wo~ cons&uction,
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as was customary in Germany. Melzer (ref. 53a) gives an outline of the
laws of similarity and describes the technique of the Junkers Airplane Co.

However, it does not always call for a complete model. Experiments
with a half-span wing restrained at the root can be very informative, when,
say, the effect of individual masses on the wing (engines,fuel tanks) on
the critical speed is involved. Such simplified model tests have also
been used as experimental check on corresponding three-dimensional flutter
calculations, since the a~roximate assumptions, which must be introduced
in order to simplify the theoretical calculation, can already be proved
on simplified systems (Runyan-Sewall (ref. %), Woolston-Runysm (ref. 55),
Gayman (ref. 56), Tuovila, l?akerand Regier (ref. 56s) and Nelson and
Rainey (ref. 56b)).

.

.

Since dynsmicall.ysimilar models of a complete airplane must not be
too small, sufficiently great tunnels axe required for their study, at
airspeeds ranging within the permissible flying speeds of the full-scale
design. This would be necessary if compressibility effects are to be
accounted for. In favorable clhate the expensive big tunnel cam be
replaced by a towing section in the open air, whereby a vehicle on rails,
propelled by rockets, carries the model. Entire tail surfaces have been
towed up to sonic velocity on such sleds, at the Rlwayds Air Force Base
(U.S.A) and tested for flutter. A slight breeze, ground effect, and the
inevitable vibrations axe less disturbing in such tests than in steady
profile measurements.

Flutter studies have also been made on dynamically similar models in “
free flight (ref. 3). The models can be studied in d~ving flight or can
be equipped with their own rocket drive and launched seaward in flight
without return. The salient data are generally radioed to the ground

.

where they are recorded. Such free-f@ing models have been used repeatedly
in the U.S. for aeroel.asticityproblems as well.as other important flight
characteristics. Free-drop tests of models on which flutter begins
direct)y above sonic velocity have been described by Dat, Destruymder,
Iaiseau, and ‘I&ubert(ref. 57) and compared with theoretical calculations.

13. I!LIGHTTESTS AT FULL SCALE -

The flight safety of new airplane types must be proved by flight at
maxbnum speed. Then it-may happen that the critical speed is exceeded
without initiating flutter, due to an accidentally absent outside impulse.
On the other hand, sudden incipient flutter may lead @ the destruction
of the airplane before the pilot has time to observe the particulars of
the event. Attempts have therefore been made to find some way by which
a dangerous flutter possibility, that escap~ theoretical.or experimental
detection, could still be spotted early enough in a flight test.

.
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h Germany they mounted, for this purpose, oscillating masses on
levers into the wing, which were excited with slowly increasing frequency,
as in the static oscillation test. It was hoped that, at increasing
oscillation amplitudes with increasing flying speed, an approach to the
critical flutter oscillation could be identified at the right the. This
is correct in principle. But in the execution of the flight tests it is
very difficult and time-cons-g to grade frequency and speed fine eno~.
The rise in smplitude C= therefore be so fast that it is too late for a
warning and the airplane crashes. However, favorable flutter males whose
amplitudes in a given speed range do not exceed a small, still nondangerous
smount have been detected by this method. These were carefully recorded
by flight tests, because they are suitable for checking theoretical methods
of calculations.

On airplanes with servocontrol, it is easier to impress a periodic
booster force on the control surface which is then transformed tito a
w tties greater periodic wing load distribution by aerodynamic trans-

formation. It is not difficult to install an additional corresponding
servocontrol for acceptance testing. This method has been used in the
U.S.A. Pepping (ref. 58) made an smal.yticalstudy of wing flutter by
artificially excited control surface oscillations. The flutter stability
can be determind from the initiated torque of the oscil.latl.ngcontrol
surface per unit of angle of rotation and observed periodically; when it
is zero, flutter condition is reached. This dmgerous condition can be
avoided by installing a hydraulic damper, or even more effectively, a
feedback coupling tith the wing rotation in the servocontrol. This raises
the critical speed, and vakes it possible to draw conclusions about the
critical speed which the aticrsft would have without stabilizing servo
mechanism from the measurements of the amplitudes and phase angles of the
excitation sad the wing motion. When the rate of reaction of the Sin-o
mechanism is high enough, it can be utilized to compensate my potentj.al
flutter by appropriate ccntrol motions with appropriate feedback. Even
gust stresses can be compensated this way. Admittedly, it may seem risky
to rely on the function- of a sensitive servo mechanism for suppressing
flutter. But it ca be used to goti advantage, at least ti high-speed
tests of a new airplane type.

14. PREVENTION OF FLUTTER BY DESIGN SPEK!D?ICATIONS

b spite of the multitude of measurements of the stress frequency
distributions of airplanes in flight atieady available, it has seldom
been possible to use the physical process of the flight stress as basis
of the strength calculations of airplanes. The strength of modern air-
craft in flight rests rather on very prtiitive dimensiti-tialy-tical
formulas and empirical values on conventional aircraft compil&i fi the
design specifications for ahplanes.
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Therefore, it seemed justifiable to follow a similar path ti the
practical treatment of flutter in order to be able .tobuild airplanes
with less flutter risk at tolerable expense. The avtiilabletheoretical .

and experimental aids are inadequate for a highly probable correct pre-
diction of flutter freedom.

The convenient method developed in the esrly days of aviation, of
piloting the airplane by free-swinging control surface hinged at the wing ,
trailing edge, actually promoted flutter. The subsequent addition of
auxiliary control surfaces multiplied the difficulty. !l%isfundamental
defect of all airplsmes up to now cem be largely removed by placing the
centroidal axis of the control surface and auxiliary control surface in
or directly before their axis of rotation. This way, the degrees of
freedom “bending or translation of the wing” and “rotation of control
surface” are uncoupled at least as regards the mass forces smd Kelvin’s
tipulses. The coupltig of the degrees of freedom “whg rotation,”
“control surface rotation,” md “auxiliary control surface rotation” is
reduced also, but not eliminated. Complete uncoupling of the degrees of
freedom is impossible for aerodynamic reasons.

The beneficial effect of this mass balsnce of control surfaces is
voided when the control surface or auxiliary control surface with its
control cables has static natural oscillations which are in resonance
with those of the wing or with one another or approach it. The phase
angle between wing oscillation and control surface oscillation is then
very slight, i.e., variable by very slight outside forces, so that it
can assume the value most favorable for energy absorption from the air-

.

stream and so lead to flutter. The second design rule therefore specifies
the avoidsnce of such neighboring frequencies, the permissible clearance
being defined by experhnent and simplified flutter calculations.

.

The stepwise application of these construction r~es for the design
—

of new aircraft and their check on the finished’atiplane by static oscil-
lation tests lowered the flutter probability considerably in Germany durtig
the 1933 to I* period, where the effect of the individual measures could
be proved statistically. Table I gives the cases of flutter tivestigated
in Germany according to the statistics of Ktissner(ref. 59) and Schwarzmann
(ref. 60), for the perickis a = 192~-1933, b = 1934-1540, and
c = 1941-194. Every spontaneously occurring case of-flutter is counted
once, =bitrarily inducible flutter altogether counted only once.

h these accidents more than 60 pilots ami test &@neers lost their
lives, 41 of them due to auxiliary control surface flutter. The mrpris-
ingly high proportion of the auxiliary control surfaces is due to the fact
that these small but vital structural components and their control cables
and supports were not always given the necessary care in the design and man- “
ufacture. By themselves positively moving sufficiently stiff auxiliary
control surfaces require no mass balance. But if they or their connections -
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=e too weak or break, a new degree of freedom coupled by mass forces
is producwl. Hence, the requirement for mass balance of auxiliary con-
trol surfaces in the German specifications.

Looktng back, it is appment that a careful application of the rules:

1. Displacement of axis of gravity in or directly before its sxis of -
rotation

2. Avoidance of frequencies approaching static oscillations on ~s,
control surfaces, and auxiliary control surfaces

would have prevented most of these flutter ticidents. Experience indi-
cates further that the permissible departures from these “ties, i.e.,
the manufacturing tolerances of production aircraft, must be very narrow.
-es t~t ~Y sea slight, .evena new coat of pa~t etc., have caused
flutter on proved airplane types, more thsn once.

For 39 of the observed cases of flutter calculations of the reduced
frequency

V2m
u) =—

v
(109)

are available, where

surface portion under
values which are only

2zm is the mean wing chord of the wing of tail-

maximlumflutter. Of particular interest are those
rsrely exceeded. Table II represents the highest,-

second highest, and third highest values. The highest values are of
lesser interest, since the tiividual values may contati relatively great
observation errors. The values ~ = 2.4 was observed fairly accurately

on a flying boat and represents a special case, because the aileron
fluttered with two degrees of freedom.

The physical basis for the empirical fact that certain msximum values
of the reduced frequency are rsrel.yexceeded must be looked for in the
structural damping of the aticraft. The damping phase angle on conven- ‘“-
tiO~l aticrsft ti gi ~0.01. !lbbe able to absorb the corresponding

ener~ from the airstream requties certain mlnimun values of we izive
-.

length of the oscillatory motion even for optimum phase angle of de~ees
of freedom. On assuming that flutter frequency is alwsys higher them
the fundbental frequency VI of the static oscillation, flutter should

be avoidable when

(Do)

where ~ indicates one of the values of table II and V. the maximum
speed.
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Originally, it was attempted in Germany to design airplanes according
to equation (110). Since the degrees of freedom “wing bendtng” and
“aileronrotation” have been decoupled since 1933 by the mass balance
recommended in the C&man design specifications, the fundamental wing
rotation served as lowest flutter responsive static oscillation mcde and
a corresponding torsional wing stiffness was demanded. But this require-
ment also proved itself as unnecessarily far-reaching for high-speed air-
craft on which the two aforementioned desiga rules had been fulfilled,
as numerous flutter calculations and model tests tidicated. Auxiliary
control surface flutter, which chiefly occurs with the degrees of freedom
“control surface rotation” and ~rauxiliarycontrol surface rotation” could
not be prevented by wing stiffness no matter how grea~. For these reasons,
the overall frequency (110) was stricken from the German Specifications 1936
(ref. 61). h its place a theoretical or experimental proof of flutter
freedom in the permissible flight range was demanded. This was still
afflicted with mamy uncertainties at that the, but it exerted, at least,
en educational effect on the airplane builder and cl~ified the influence
of the most tiportant flutter parameters.

. I
!

.

Through this flutter proof, which extendd to the static ltiitLng
cases of wing deflection and reversal of control surface effect, the wing
stiffness and control surface stiffness were given a lower limit.

It was found, repeatedly, that the stiffness prevailing for reasons
of strength itself was above this lower limit, hence, that the parti-
cular airplane was safe against flutter and static instability when it
satisfied the strength requirements and in addition satisfied the two .

aforementioned design regulations. Wittmeyer (ref. 62) advocated a
corresponding airplsne development while retaining certain basic design
modes, which have proved themselves as flutter-safe b an extended series

.

of developments. w prescribing certain dimensionless parmneters and
additional rules for the auxiliary control surfaces & the design of new
types of aircraft, it should then be possible to attain flutter safety
by way of compliance with the strength requtiements. However, such design
rules can be applicable only in a narrowly limited emptrical range. When
advancing into higher speed ranges and with the use of very thin airfoils,
the matter becomes different. h section 9, there is-given a third design
rule which prevents skin buckling in any operating condition; de Vries
(ref. 63) gives a critical summary of the design rules for the prevention
of flutter.

h the British Specifications and in those of the IC?AO(hternational
Civil Aviation Organization (ref. ~)), overall stiffness requirements
still take up a lot of space. It deals with recommendations for conven-
tional aircraft, the compliance of which dispenses with a further flutter
proof. These requirements call for minimum values of–the mean torsional w
stiffness of wing, fuselage, tail unit, and control surfaces, which depend

“

0
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upon the permissible maximum speed @ on certain d~ensions of these
structural components as follows

M is a moment,
point, VD the

lengths; on the

()v~ -1/2
~~k2pv%21-- ~~ 0.8
@ OD co co (111)

G1 the angle of rotation durhg this moment at a certain
maximum gliding speed at 30° path slope, Band Sare
wing, for exsmple

B = O.gb s=+%

b = wing span from root to tip, ~ the mean geometric chord. The
dimensionless constant k for the separate components is specified.
This formula (111) is applied also to the flexural stiffness of the
fuselage and the elevator overhang srm, with M and Q defined
accordingly.

Eqyation (11..l)follows from the condition of the static torsional
stability of the wing by forming the mesm value of the titegral. For
this case, the Frsndtl factor is correct. The constant k2 is then,
however, proportional to the rearwaxd position of the elastic axisl
behind the neutral axis at quarter wing chord, but this rearward posi-
tion is materially dependent upon the respective structural design of
the wing.

So far as the overall stiffnesses according to equation (ill) me
to serve for the prevention of flutter, they are supportable only by
equation (110) and table II, hence sre disguised frequency requirements.
(Cf. Collar, Broadbent, smd Puttick (refs. 2 and 65).) But the static
oscillation frequencies vi of an a&plane sre dependent in a rather

complicated manner upon the size and distribution of masses and stiffnesses.
To justify overall stiffness formulas like eqy.ation(Ill), the constructive
tolermce, conceded to the “conventional” airplanes, would have to be very
narrow, i.e., they al.lwould have to be practically geometrically similar
and psrtially dynamically similar, according to development series inves-
tigatedby Wittmeyer (ref. 62). Or else the safety factor of the overall
stiffness would have to be very gyeat, since the actual differences of the
airplanes of different manufacturers cause a correspondingly great varia-
tion of the decisive oscillation frequencies Vi.

%Che calculating methods hitherto were based on the replacement of the
wing by em elastic beam with elastic sxi.s. A plate-like wing has no
elastic axis.



42

Shifting the gravity axis and the elastic axis of the wing in the
neutral axis, the degrees of freedom “wing bending” and “wing rotation”
in the subsonic range can be decoupled, thus avoiding flutter. A mass-
balanced control surface does not change this action very much as a rule.
This mass balance of the wing has been used very rarely in the past.
But it might be that future aircraft with very thin wings will be subject
to a requirement regarding the position of the gravity axis of the wing,
in order to lower the required torsional stiffness of the wing to a
structurally tolerable level.

To assure safety of aircraft against flutter in the future, the young
aeronautical engineers must be made fsmiliar with aeroelastic problems
now, so as to enable them to take the correct safeguards while the air-
craft is being designed. Formerly, airpl&es were generally designed
or even built tithout regs&d to flutter hazards, and trying to find a
remedy proved then a too long @ expensive undertaking. The flight
performances often deteriorated so much that the particular type had to
be withdrawn from the competition. A subsequent elevator mass balance,
for exsmple, cost 10 percent of the pay load and more on balance weight,
aside from the greater air resistance of the externally mounted balance
weights.

As we enter the higher speed rsmges, aeroelastic problems must
receive particular attention. Ehpirical data and desigy rules, which
are satisfactory or still acceptable for conventional aticraft, can no
longer be relied upon, the physical process itself must be studied and
mastered,

Translated by J. Venier
National Advisory Committee
for Aeronautics
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TABLEI.- FLUTI!ERSTATISTICS

NACA TM 1402

, w@,j ~it Em:;y:Btail Ver;tacgil

Rrobable causeO of flutter‘
a b c a b c a b c E

Rear balance of control
surface 13 28 8 1 12 1 - 1~ 1 81.

Neighboring frequencies -- 7 - - 12 - - 1 - 20

Auxiliary control-surfaces -- 4 - - 43 7 - 18 3 75

Landing flaps -- 2 - - -- - - -- - 2

Unexplained -- 1 1 - 1 - - -- - 3 .

.
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.

.

TtIBLE IIo- MMIMUM VALUES OF OBSERVHl REDTJJEDFREQUEN3Y .

9 ‘2 %5

wing unit (2.4) 1.29 1.14

Horizontal tail surface 1.1 0.55 0.51

Vertical tail surface 0.4 o.ko 0.38

.

.

,

.
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